Proper and improper multiple imputation
نویسندگان
چکیده
Multiple imputation has become viewed as a general solution to missing data problems in statistics. However, in order to lead to consistent asymptotically normal estimators, correct variance estimators and valid tests, the imputations must be proper. So far it seems that only Bayesian multiple imputation, i.e. using a Bayesian predictive distribution to generate the imputations, or approximately Bayesian multiple imputations has been shown to lead to proper imputations. In this paper, we shall see that Bayesian multiple imputation does not generally lead to proper multiple imputations. Furthermore, it will be argued that for general statistical use, Bayesian multiple imputation is inefficient even when it is proper.
منابع مشابه
Accuracy evaluation of different statistical and geostatistical censored data imputation approaches (Case study: Sari Gunay gold deposit)
Most of the geochemical datasets include missing data with different portions and this may cause a significant problem in geostatistical modeling or multivariate analysis of the data. Therefore, it is common to impute the missing data in most of geochemical studies. In this study, three approaches called half detection (HD), multiple imputation (MI), and the cosimulation based on Markov model 2...
متن کاملAn Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods
Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...
متن کاملTwo-way imputation: A Bayesian method for estimating missing scores in tests and questionnaires, and an accurate approximation
Previous research has shown that method two-way with error for multiple imputation in test and questionnaire data produces small bias in statistical analyses. This method is based on a two-way ANOVA model of persons by items but it is improper from a Bayesian point of view. Proper two-way imputations are generated using data augmentation. Simulation results show that the resulting method two-wa...
متن کاملچند رویکرد برخورد با مقادیر گمشده متغیرهای کمی و بررسی اثر آنها بر نتایج حاصل از یک کارآزمایی بالینی
Background and Objectives: A major challenge that affects the longitudinal studies is the problem of missing data. Missing in the data may result in the loss of part of the information which reduces the accuracy of the estimator and obtain the results will be biased and inaccurate. Therefore, it is necessary to evaluate the missing data mechanism from a longitudinal research and to consider thi...
متن کاملAn Introduction to Multiple Imputation of Complex Sample Data using SAS ®
This paper presents practical guidance on the proper use of multiple imputation tools in SAS® 9.2 and the subsequent analysis of multiple imputed data sets from a complex sample survey data set. Use of the MI and MIANALYZE procedures and SAS survey procedures for typical descriptive and inferential analyses is demonstrated. The analytic techniques presented can be used on any operating system a...
متن کامل